「グラフニューラルネットワークの組合せ問題に対する近似度」(佐藤竜馬・山田 誠・鹿島久嗣)が2019年度IBISML研究会賞を受賞しました。
受賞理由:本論文では,様々な種類のグラフニューラルネットワーク(GNN)が持つ表現力を解析することで,GNNの族がなす階層構造を明らかにするとともに,既存のGNNよりも表現力が高い新規GNNの導出を可能とした.さらに,種々の組合せ最適化問題に対するGNNの近似精度を理論的に解析し,分散局所アルゴリズムを利用するというアイデアによって近似度の導出に成功した.これらの成果は,今後のGNNの発展にとって欠かせない結果であり,GNNの適用範囲を本質的に広げるための基礎となりうる重要な貢献である.新規性,重要性ともに優れた研究であり,研究会賞に値する.
参考:Ryoma Sato, Makoto Yamada, Hisashi Kashima.
Approximation Ratios of Graph Neural Networks for Combinatorial Problems.
In Advances in Neural Information Processing Systems (NeurIPS), 2019.