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Problem setting:
Estimate ranking from pairwise comparison data

= Problem setting: estimate ranking of objects
using pairwise comparison results
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Problem setting:
Estimate ranking from pairwise comparison data

= Problem setting: estimate ranking of objects
using pairwise comparison results

Data
collection

—

Time-consuming or

expensive to obtain!
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Background:

efficient data-collection method is needed

= Example: want to know taste ranking of chocolates

= Data-collection (eating) is very tough
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Background:
efficient data-collection method i1s needed

= Example: want to know taste ranking of chocolates

= Data-collection (eating) is very tough

Data Proposed to collect data efficiently:
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Progressive Comparison:
Data-collection method needing fewer evaluations

= Existing method (Standard pairwise comparison):

hetter of the twa SRR OMpariso 3 comparisons

need

Object A |{ Object B Object B |{ Object C Object C |{ Object D

= Proposed method (Progressive Comparison):

hetween the ent object and the 3 comparisons

previa evaluated one Comparison Comparison
) ) need

Object A Object B Object C Object D

mmmm 4 evaluations




Active learning for Progressive comparison:
Estimate ranking efficiently by selecting pairs

= Utilities calculated for each pair

= Priority given to a pair that has larger utility value
= Two definitions of utility proposed:
(i) Change in Distributions (CiD):
expectation of changes in distributions of object scores
(i) Change in Winning Probabilities (CiWP):
expectation of changes in winning probability matrices

M /N W

Object A Object B Object C Object D

Next evaluated object

determined by utility value




(i) Change in Distributions (CiD):
Calculate expectation of changes in distributions

= Expectation of changes in distributions calculated by
KL divergence between normal distributions:

Distribution of score of Distribution of score of
object o object o

If oi wins If oj wins
against oj: against oi:




(i1) Change in Winning Probabilities (CiWP):
Calculate expectation of changes of matrices

Expectation of changes in matrices calculated by

KL divergence between Bernoulli distributions:
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Experiment settings:
Ranking estimation using Glicko Update Equation

Glicko Update Equation:
= Online ranking estimation algorithm of Bradley-Terry model
= Update scores of object using comparison result
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Updated scoreﬁ ﬁ Old score Comparison result

Glickman, Mark E. "Parameter estimation in large dynamic paired comparison experiments.”
Journal of the Royal Statistical Society: Series C (Applied Statistics) 48.3 (1999): 377-394,

Dataset:
= Synthetic (100 objects)
= Image comparison (50 objects)

= Wikipedia article comparison (30 objects)
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Experiment results:
Progressive Comparison and active learning methods

Experimental results demonstrate the efficiency of
Progressive Comparison and its active learning methods
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Experiment results:
Progressive Comparison and active learning methods

= Experimental results demonstrate the efficiency of
Progressive Comparison and its active learning methods

Progressive Comparison

(proposed method) — SlaEREECEES

Comparison of Accuracies with Wikipedia Real Dataset

Standard pairwise
(existing method)

Progressive is more
efficient than pairwise
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Experiment results:

Progressive Comparison and active learning methods

= Experimental results demonstrate the efficiency of

Progressive Comparison and its active learning methods

Progressive Comparison
ikipedia Real Dataset

(proposed method)

Standard pairwise
(existing method)

Progressive is more
efficient than pairwise
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Conclusions:

Progressive Comparison for Ranking Estimation

= Ranking estimation problem addressed
= Proposed:
= Progressive comparison

= Active learning method of Progressive Comparison
= Change in Distributions
= Change in Winning Probabilities
= Experimental results show:
= Superiority of Progressive Comparison to standard pairwise

= Efficiency of active learning methods for Progressive
Comparison (especially (i) CiIWP)

12



